Paper Reading AI Learner

Personalized Game Difficulty Prediction Using Factorization Machines

2022-09-06 08:03:46
Jeppe Theiss Kristensen, Christian Guckelsberger, Paolo Burelli, Perttu Hämäläinen

Abstract

The accurate and personalized estimation of task difficulty provides many opportunities for optimizing user experience. However, user diversity makes such difficulty estimation hard, in that empirical measurements from some user sample do not necessarily generalize to others. In this paper, we contribute a new approach for personalized difficulty estimation of game levels, borrowing methods from content recommendation. Using factorization machines (FM) on a large dataset from a commercial puzzle game, we are able to predict difficulty as the number of attempts a player requires to pass future game levels, based on observed attempt counts from earlier levels and levels played by others. In addition to performance and scalability, FMs offer the benefit that the learned latent variable model can be used to study the characteristics of both players and game levels that contribute to difficulty. We compare the approach to a simple non-personalized baseline and a personalized prediction using Random Forests. Our results suggest that FMs are a promising tool enabling game designers to both optimize player experience and learn more about their players and the game.

Abstract (translated)

URL

https://arxiv.org/abs/2209.13495

PDF

https://arxiv.org/pdf/2209.13495.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot