Paper Reading AI Learner

Toward Safe and Accelerated Deep Reinforcement Learning for Next-Generation Wireless Networks

2022-09-16 04:50:49
Ahmad M. Nagib, Hatem Abou-zeid, Hossam S. Hassanein

Abstract

Deep reinforcement learning (DRL) algorithms have recently gained wide attention in the wireless networks domain. They are considered promising approaches for solving dynamic radio resource management (RRM) problems in next-generation networks. Given their capabilities to build an approximate and continuously updated model of the wireless network environments, DRL algorithms can deal with the multifaceted complexity of such environments. Nevertheless, several challenges hinder the practical adoption of DRL in commercial networks. In this article, we first discuss two key practical challenges that are faced but rarely tackled when developing DRL-based RRM solutions. We argue that it is inevitable to address these DRL-related challenges for DRL to find its way to RRM commercial solutions. In particular, we discuss the need to have safe and accelerated DRL-based RRM solutions that mitigate the slow convergence and performance instability exhibited by DRL algorithms. We then review and categorize the main approaches used in the RRM domain to develop safe and accelerated DRL-based solutions. Finally, a case study is conducted to demonstrate the importance of having safe and accelerated DRL-based RRM solutions. We employ multiple variants of transfer learning (TL) techniques to accelerate the convergence of intelligent radio access network (RAN) slicing DRL-based controllers. We also propose a hybrid TL-based approach and sigmoid function-based rewards as examples of safe exploration in DRL-based RAN slicing.

Abstract (translated)

URL

https://arxiv.org/abs/2209.13532

PDF

https://arxiv.org/pdf/2209.13532.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot