Paper Reading AI Learner

Deep Unfolding of the DBFB Algorithm with Application to ROI CT Imaging with Limited Angular Density

2022-09-27 09:10:57
Marion Savanier, Emilie Chouzenoux, Jean-Christophe Pesquet, Cyril Riddell

Abstract

This paper addresses the problem of image reconstruction for region-of-interest (ROI) computed tomography (CT). While model-based iterative methods can be used for such a problem, their practicability is often limited due to tedious parameterization and slow convergence. In addition, inadequate solutions can be obtained when the retained priors do not perfectly fit the solution space. Deep learning methods offer an alternative approach that is fast, leverages information from large data sets, and thus can reach high reconstruction quality. However, these methods usually rely on black boxes not accounting for the physics of the imaging system, and their lack of interpretability is often deplored. At the crossroads of both methods, unfolded deep learning techniques have been recently proposed. They incorporate the physics of the model and iterative optimization algorithms into a neural network design, leading to superior performance in various applications. This paper introduces a novel, unfolded deep learning approach called U-RDBFB designed for ROI CT reconstruction from limited data. Few-view truncated data are efficiently handled thanks to a robust non-convex data fidelity function combined with sparsity-inducing regularization functions. Iterations of a block dual forward-backward (DBFB) algorithm, embedded in an iterative reweighted scheme, are then unrolled over a neural network architecture, allowing the learning of various parameters in a supervised manner. Our experiments show an improvement over various state-of-the-art methods, including model-based iterative schemes, deep learning architectures, and deep unfolding methods.

Abstract (translated)

URL

https://arxiv.org/abs/2209.13264

PDF

https://arxiv.org/pdf/2209.13264.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot