Paper Reading AI Learner

Non-contrastive approaches to similarity learning: positive examples are all you need

2022-09-28 13:27:10
Alexander Marusov, Valerii Baianov, Alexey Zaytsev

Abstract

The similarity learning problem in the oil \& gas industry aims to construct a model that estimates similarity between interval measurements for logging data. Previous attempts are mostly based on empirical rules, so our goal is to automate this process and exclude expensive and time-consuming expert labelling. One of the approaches for similarity learning is self-supervised learning (SSL). In contrast to the supervised paradigm, this one requires little or no labels for the data. Thus, we can learn such models even if the data labelling is absent or scarce. Nowadays, most SSL approaches are contrastive and non-contrastive. However, due to possible wrong labelling of positive and negative samples, contrastive methods don't scale well with the number of objects. Non-contrastive methods don't rely on negative samples. Such approaches are actively used in the computer vision. We introduce non-contrastive SSL for time series data. In particular, we build on top of BYOL and Barlow Twins methods that avoid using negative pairs and focus only on matching positive pairs. The crucial part of these methods is an augmentation strategy. Different augmentations of time series exist, while their effect on the performance can be both positive and negative. Our augmentation strategies and adaption for BYOL and Barlow Twins together allow us to achieve a higher quality (ARI $= 0.49$) than other self-supervised methods (ARI $= 0.34$ only), proving usefulness of the proposed non-contrastive self-supervised approach for the interval similarity problem and time series representation learning in general.

Abstract (translated)

URL

https://arxiv.org/abs/2209.14750

PDF

https://arxiv.org/pdf/2209.14750.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot