Paper Reading AI Learner

Batch Normalization Explained

2022-09-29 13:41:27
Randall Balestriero, Richard G. Baraniuk

Abstract

A critically important, ubiquitous, and yet poorly understood ingredient in modern deep networks (DNs) is batch normalization (BN), which centers and normalizes the feature maps. To date, only limited progress has been made understanding why BN boosts DN learning and inference performance; work has focused exclusively on showing that BN smooths a DN's loss landscape. In this paper, we study BN theoretically from the perspective of function approximation; we exploit the fact that most of today's state-of-the-art DNs are continuous piecewise affine (CPA) splines that fit a predictor to the training data via affine mappings defined over a partition of the input space (the so-called "linear regions"). {\em We demonstrate that BN is an unsupervised learning technique that -- independent of the DN's weights or gradient-based learning -- adapts the geometry of a DN's spline partition to match the data.} BN provides a "smart initialization" that boosts the performance of DN learning, because it adapts even a DN initialized with random weights to align its spline partition with the data. We also show that the variation of BN statistics between mini-batches introduces a dropout-like random perturbation to the partition boundaries and hence the decision boundary for classification problems. This per mini-batch perturbation reduces overfitting and improves generalization by increasing the margin between the training samples and the decision boundary.

Abstract (translated)

URL

https://arxiv.org/abs/2209.14778

PDF

https://arxiv.org/pdf/2209.14778.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot