Paper Reading AI Learner

Energy Efficient Hardware Acceleration of Neural Networks with Power-of-Two Quantisation

2022-09-30 06:33:40
Dominika Przewlocka-Rus, Tomasz Kryjak

Abstract

Deep neural networks virtually dominate the domain of most modern vision systems, providing high performance at a cost of increased computational complexity.Since for those systems it is often required to operate both in real-time and with minimal energy consumption (e.g., for wearable devices or autonomous vehicles, edge Internet of Things (IoT), sensor networks), various network optimisation techniques are used, e.g., quantisation, pruning, or dedicated lightweight architectures. Due to the logarithmic distribution of weights in neural network layers, a method providing high performance with significant reduction in computational precision (for 4-bit weights and less) is the Power-of-Two (PoT) quantisation (and therefore also with a logarithmic distribution). This method introduces additional possibilities of replacing the typical for neural networks Multiply and ACcumulate (MAC -- performing, e.g., convolution operations) units, with more energy-efficient Bitshift and ACcumulate (BAC). In this paper, we show that a hardware neural network accelerator with PoT weights implemented on the Zynq UltraScale + MPSoC ZCU104 SoC FPGA can be at least $1.4x$ more energy efficient than the uniform quantisation version. To further reduce the actual power requirement by omitting part of the computation for zero weights, we also propose a new pruning method adapted to logarithmic quantisation.

Abstract (translated)

URL

https://arxiv.org/abs/2209.15257

PDF

https://arxiv.org/pdf/2209.15257.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot