Paper Reading AI Learner

Interpretable Deep Tracking

2022-10-03 23:15:13
Benjamin Thérien, Krzysztof Czarnecki

Abstract

Imagine experiencing a crash as the passenger of an autonomous vehicle. Wouldn't you want to know why it happened? Current end-to-end optimizable deep neural networks (DNNs) in 3D detection, multi-object tracking, and motion forecasting provide little to no explanations about how they make their decisions. To help bridge this gap, we design an end-to-end optimizable multi-object tracking architecture and training protocol inspired by the recently proposed method of interchange intervention training (IIT). By enumerating different tracking decisions and associated reasoning procedures, we can train individual networks to reason about the possible decisions via IIT. Each network's decisions can be explained by the high-level structural causal model (SCM) it is trained in alignment with. Moreover, our proposed model learns to rank these outcomes, leveraging the promise of deep learning in end-to-end training, while being inherently interpretable.

Abstract (translated)

URL

https://arxiv.org/abs/2210.01266

PDF

https://arxiv.org/pdf/2210.01266.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot