Paper Reading AI Learner

FSNet: Compression of Deep Convolutional Neural Networks by Filter Summary

2019-02-08 19:26:46
Yingzhen Yang, Nebojsa Jojic, Jun Huan

Abstract

We present a novel method of compression of deep Convolutional Neural Networks (CNNs). The proposed method reduces the number of parameters of each convolutional layer by learning a 3D tensor termed Filter Summary (FS). The convolutional filters are extracted from FS as overlapping 3D blocks, and nearby filters in FS share weights in their overlapping regions in a natural way. The resultant neural network based on such weight sharing scheme, termed Filter Summary CNNs or FSNet, has a FS in each convolution layer instead of a set of independent filters in the conventional convolution layer. FSNet has the same architecture as that of the baseline CNN to be compressed, and each convolution layer of FSNet generates the same number of filters from FS as that of the basline CNN in the forward process. Without hurting the inference speed, the parameter space of FSNet is much smaller than that of the baseline CNN. In addition, FSNet is compatible with weight quantization, leading to even higher compression ratio when combined with weight quantization. Experiments demonstrate the effectiveness of FSNet in compression of CNNs for computer vision tasks including image classification and object detection. For classification task, FSNet of 0.22M effective parameters has prediction accuracy of 93.91% on the CIFAR-10 dataset with less than 0.3% accuracy drop, using ResNet-18 of 11.18M parameters as baseline. Furthermore, FSNet version of ResNet-50 with 2.75M effective parameters achieves the top-1 and top-5 accuracy of 63.80% and 85.72% respectively on ILSVRC-12 benchmark. For object detection task, FSNet is used to compress the Single Shot MultiBox Detector (SSD300) of 26.32M parameters. FSNet of 0.45M effective parameters achieves mAP of 67.63% on the VOC2007 test data with weight quantization, and FSNet of 0.68M parameters achieves mAP of 70.00% with weight quantization on the same test data.

Abstract (translated)

URL

https://arxiv.org/abs/1902.03264

PDF

https://arxiv.org/pdf/1902.03264.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot