Paper Reading AI Learner

Towards Segmenting Everything That Moves

2019-02-11 03:40:48
Achal Dave, Pavel Tokmakov, Deva Ramanan

Abstract

Video analysis is the task of perceiving the world as it changes. Often, though, most of the world doesn't change all that much: it's boring. For many applications such as action detection or robotic interaction, segmenting all moving objects is a crucial first step. While this problem has been well-studied in the field of spatiotemporal segmentation, virtually none of the prior works use learning-based approaches, despite significant advances in single-frame instance segmentation. We propose the first deep-learning based approach for video instance segmentation. Our two-stream models' architecture is based on Mask R-CNN, but additionally takes optical flow as input to identify moving objects. It then combines the motion and appearance cues to correct motion estimation mistakes and capture the full extent of objects. We show state-of-the-art results on the Freiburg Berkeley Motion Segmentation dataset by a wide margin. One potential worry with learning-based methods is that they might overfit to the particular type of objects that they have been trained on. While current recognition systems tend to be limited to a "closed world" of N objects on which they are trained, our model seems to segment almost anything that moves.

Abstract (translated)

URL

https://arxiv.org/abs/1902.03715

PDF

https://arxiv.org/pdf/1902.03715.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot