Paper Reading AI Learner

Extracting Meaningful Attention on Source Code: An Empirical Study of Developer and Neural Model Code Exploration

2022-10-11 14:58:58
Matteo Paltenghi, Rahul Pandita, Austin Z. Henley, Albert Ziegler

Abstract

The high effectiveness of neural models of code, such as OpenAI Codex and AlphaCode, suggests coding capabilities of models that are at least comparable to those of humans. However, previous work has only used these models for their raw completion, ignoring how the model reasoning, in the form of attention weights, can be used for other downstream tasks. Disregarding the attention weights means discarding a considerable portion of what those models compute when queried. To profit more from the knowledge embedded in these large pre-trained models, this work compares multiple approaches to post-process these valuable attention weights for supporting code exploration. Specifically, we compare to which extent the transformed attention signal of CodeGen, a large and publicly available pretrained neural model, agrees with how developers look at and explore code when each answering the same sense-making questions about code. At the core of our experimental evaluation, we collect, manually annotate, and open-source a novel eye-tracking dataset comprising 25 developers answering sense-making questions on code over 92 sessions. We empirically evaluate five attention-agnostic heuristics and ten attention-based post processing approaches of the attention signal against our ground truth of developers exploring code, including the novel concept of follow-up attention which exhibits the highest agreement. Beyond the dataset contribution and the empirical study, we also introduce a novel practical application of the attention signal of pre-trained models with completely analytical solutions, going beyond how neural models' attention mechanisms have traditionally been used.

Abstract (translated)

URL

https://arxiv.org/abs/2210.05506

PDF

https://arxiv.org/pdf/2210.05506.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot