Paper Reading AI Learner

Predictive Event Segmentation and Representation with Neural Networks: A Self-Supervised Model Assessed by Psychological Experiments

2022-10-04 14:14:30
Hamit Basgol, Inci Ayhan, Emre Ugur

Abstract

People segment complex, ever-changing and continuous experience into basic, stable and discrete spatio-temporal experience units, called events. Event segmentation literature investigates the mechanisms that allow people to extract events. Event segmentation theory points out that people predict ongoing activities and observe prediction error signals to find event boundaries that keep events apart. In this study, we investigated the mechanism giving rise to this ability by a computational model and accompanying psychological experiments. Inspired from event segmentation theory and predictive processing, we introduced a self-supervised model of event segmentation. This model consists of neural networks that predict the sensory signal in the next time-step to represent different events, and a cognitive model that regulates these networks on the basis of their prediction errors. In order to verify the ability of our model in segmenting events, learning them during passive observation, and representing them in its internal representational space, we prepared a video that depicts human behaviors represented by point-light displays. We compared event segmentation behaviors of participants and our model with this video in two hierarchical event segmentation levels. By using point-biserial correlation technique, we demonstrated that event segmentation decisions of our model correlated with the responses of participants. Moreover, by approximating representation space of participants by a similarity-based technique, we showed that our model formed a similar representation space with those of participants. The result suggests that our model that tracks the prediction error signals can produce human-like event boundaries and event representations. Finally, we discussed our contribution to the literature of event cognition and our understanding of how event segmentation is implemented in the brain.

Abstract (translated)

URL

https://arxiv.org/abs/2210.05710

PDF

https://arxiv.org/pdf/2210.05710.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot