Paper Reading AI Learner

ConvTransSeg: A Multi-resolution Convolution-Transformer Network for Medical Image Segmentation

2022-10-13 14:59:23
Zhendi Gong, Andrew P. French, Guoping Qiu, Xin Chen

Abstract

Convolutional neural networks (CNNs) achieved the state-of-the-art performance in medical image segmentation due to their ability to extract highly complex feature representations. However, it is argued in recent studies that traditional CNNs lack the intelligence to capture long-term dependencies of different image regions. Following the success of applying Transformer models on natural language processing tasks, the medical image segmentation field has also witnessed growing interest in utilizing Transformers, due to their ability to capture long-range contextual information. However, unlike CNNs, Transformers lack the ability to learn local feature representations. Thus, to fully utilize the advantages of both CNNs and Transformers, we propose a hybrid encoder-decoder segmentation model (ConvTransSeg). It consists of a multi-layer CNN as the encoder for feature learning and the corresponding multi-level Transformer as the decoder for segmentation prediction. The encoder and decoder are interconnected in a multi-resolution manner. We compared our method with many other state-of-the-art hybrid CNN and Transformer segmentation models on binary and multiple class image segmentation tasks using several public medical image datasets, including skin lesion, polyp, cell and brain tissue. The experimental results show that our method achieves overall the best performance in terms of Dice coefficient and average symmetric surface distance measures with low model complexity and memory consumption. In contrast to most Transformer-based methods that we compared, our method does not require the use of pre-trained models to achieve similar or better performance. The code is freely available for research purposes on Github: (the link will be added upon acceptance).

Abstract (translated)

URL

https://arxiv.org/abs/2210.07072

PDF

https://arxiv.org/pdf/2210.07072.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot