Paper Reading AI Learner

$Λ$-DARTS: Mitigating Performance Collapse by Harmonizing Operation Selection among Cells

2022-10-14 17:54:01
Sajad Movahedi, Melika Adabinejad, Ayyoob Imani, Arezou Keshavarz, Mostafa Dehghani, Azadeh Shakery, Babak N. Araabi

Abstract

Differentiable neural architecture search (DARTS) is a popular method for neural architecture search (NAS), which performs cell-search and utilizes continuous relaxation to improve the search efficiency via gradient-based optimization. The main shortcoming of DARTS is performance collapse, where the discovered architecture suffers from a pattern of declining quality during search. Performance collapse has become an important topic of research, with many methods trying to solve the issue through either regularization or fundamental changes to DARTS. However, the weight-sharing framework used for cell-search in DARTS and the convergence of architecture parameters has not been analyzed yet. In this paper, we provide a thorough and novel theoretical and empirical analysis on DARTS and its point of convergence. We show that DARTS suffers from a specific structural flaw due to its weight-sharing framework that limits the convergence of DARTS to saturation points of the softmax function. This point of convergence gives an unfair advantage to layers closer to the output in choosing the optimal architecture, causing performance collapse. We then propose two new regularization terms that aim to prevent performance collapse by harmonizing operation selection via aligning gradients of layers. Experimental results on six different search spaces and three different datasets show that our method ($\Lambda$-DARTS) does indeed prevent performance collapse, providing justification for our theoretical analysis and the proposed remedy.

Abstract (translated)

URL

https://arxiv.org/abs/2210.07998

PDF

https://arxiv.org/pdf/2210.07998.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot