Paper Reading AI Learner

oViT: An Accurate Second-Order Pruning Framework for Vision Transformers

2022-10-14 12:19:09
Denis Kuznedelev, Eldar Kurtic, Elias Frantar, Dan Alistarh

Abstract

Models from the Vision Transformer (ViT) family have recently provided breakthrough results across image classification tasks such as ImageNet. Yet, they still face barriers to deployment, notably the fact that their accuracy can be severely impacted by compression techniques such as pruning. In this paper, we take a step towards addressing this issue by introducing Optimal ViT Surgeon (oViT), a new state-of-the-art method for the weight sparsification of Vision Transformers (ViT) models. At the technical level, oViT introduces a new weight pruning algorithm which leverages second-order information, specifically adapted to be both highly-accurate and efficient in the context of ViTs. We complement this accurate one-shot pruner with an in-depth investigation of gradual pruning, augmentation, and recovery schedules for ViTs, which we show to be critical for successful ViT compression. We validate our method via extensive experiments on classical ViT and DeiT models, as well as on newer variants, such as XCiT, EfficientFormer and Swin. Moreover, our results are even relevant to recently-proposed highly-accurate ResNets. Our results show for the first time that ViT-family models can in fact be pruned to high sparsity levels (e.g. $\geq 75\%$) with low impact on accuracy ($\leq 1\%$ relative drop), and that our approach outperforms prior methods by significant margins at high sparsities. In addition, we show that our method is compatible with structured pruning methods and quantization, and that it can lead to significant speedups on a sparsity-aware inference engine.

Abstract (translated)

URL

https://arxiv.org/abs/2210.09223

PDF

https://arxiv.org/pdf/2210.09223.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot