Paper Reading AI Learner

Efficient Cross-Modal Video Retrieval with Meta-Optimized Frames

2022-10-16 05:35:00
Ning Han, Xun Yang, Ee-Peng Lim, Hao Chen, Qianru Sun

Abstract

Cross-modal video retrieval aims to retrieve the semantically relevant videos given a text as a query, and is one of the fundamental tasks in Multimedia. Most of top-performing methods primarily leverage Visual Transformer (ViT) to extract video features [1, 2, 3], suffering from high computational complexity of ViT especially for encoding long videos. A common and simple solution is to uniformly sample a small number (say, 4 or 8) of frames from the video (instead of using the whole video) as input to ViT. The number of frames has a strong influence on the performance of ViT, e.g., using 8 frames performs better than using 4 frames yet needs more computational resources, resulting in a trade-off. To get free from this trade-off, this paper introduces an automatic video compression method based on a bilevel optimization program (BOP) consisting of both model-level (i.e., base-level) and frame-level (i.e., meta-level) optimizations. The model-level learns a cross-modal video retrieval model whose input is the "compressed frames" learned by frame-level optimization. In turn, the frame-level optimization is through gradient descent using the meta loss of video retrieval model computed on the whole video. We call this BOP method as well as the "compressed frames" as Meta-Optimized Frames (MOF). By incorporating MOF, the video retrieval model is able to utilize the information of whole videos (for training) while taking only a small number of input frames in actual implementation. The convergence of MOF is guaranteed by meta gradient descent algorithms. For evaluation, we conduct extensive experiments of cross-modal video retrieval on three large-scale benchmarks: MSR-VTT, MSVD, and DiDeMo. Our results show that MOF is a generic and efficient method to boost multiple baseline methods, and can achieve a new state-of-the-art performance.

Abstract (translated)

URL

https://arxiv.org/abs/2210.08452

PDF

https://arxiv.org/pdf/2210.08452.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot