Paper Reading AI Learner

CLIP-Driven Fine-grained Text-Image Person Re-identification

2022-10-19 03:43:12
Shuanglin Yan, Neng Dong, Liyan Zhang, Jinhui Tang

Abstract

TIReID aims to retrieve the image corresponding to the given text query from a pool of candidate images. Existing methods employ prior knowledge from single-modality pre-training to facilitate learning, but lack multi-modal correspondences. Besides, due to the substantial gap between modalities, existing methods embed the original modal features into the same latent space for cross-modal alignment. However, feature embedding may lead to intra-modal information distortion. Recently, CLIP has attracted extensive attention from researchers due to its powerful semantic concept learning capacity and rich multi-modal knowledge, which can help us solve the above problems. Accordingly, in the paper, we propose a CLIP-driven Fine-grained information excavation framework (CFine) to fully utilize the powerful knowledge of CLIP for TIReID. To transfer the multi-modal knowledge effectively, we perform fine-grained information excavation to mine intra-modal discriminative clues and inter-modal correspondences. Specifically, we first design a multi-grained global feature learning module to fully mine intra-modal discriminative local information, which can emphasize identity-related discriminative clues by enhancing the interactions between global image (text) and informative local patches (words). Secondly, cross-grained feature refinement (CFR) and fine-grained correspondence discovery (FCD) modules are proposed to establish the cross-grained and fine-grained interactions between modalities, which can filter out non-modality-shared image patches/words and mine cross-modal correspondences from coarse to fine. CFR and FCD are removed during inference to save computational costs. Note that the above process is performed in the original modality space without further feature embedding. Extensive experiments on multiple benchmarks demonstrate the superior performance of our method on TIReID.

Abstract (translated)

URL

https://arxiv.org/abs/2210.10276

PDF

https://arxiv.org/pdf/2210.10276.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot