Paper Reading AI Learner

Using deep convolutional neural networks to classify poisonous and edible mushrooms found in China

2022-10-19 07:36:26
Baiming Zhang, Ying Zhao, Zhixiang Li

Abstract

Because of their abundance of amino acids, polysaccharides, and many other nutrients that benefit human beings, mushrooms are deservedly popular as dietary cuisine both worldwide and in China. However, if people eat poisonous fungi by mistake, they may suffer from nausea, vomiting, mental disorder, acute anemia, or even death. Each year in China, there are around 8000 people became sick, and 70 died as a result of eating toxic mushrooms by mistake. It is counted that there are thousands of kinds of mushrooms among which only around 900 types are edible, thus without specialized knowledge, the probability of eating toxic mushrooms by mistake is very high. Most people deem that the only characteristic of poisonous mushrooms is a bright colour, however, some kinds of them do not correspond to this trait. In order to prevent people from eating these poisonous mushrooms, we propose to use deep learning methods to indicate whether a mushroom is toxic through analyzing hundreds of edible and toxic mushrooms smartphone pictures. We crowdsource a mushroom image dataset that contains 250 images of poisonous mushrooms and 200 images of edible mushrooms. The Convolutional Neural Network (CNN) is a specialized type of artificial neural networks that use a mathematical operation called convolution in place of general matrix multiplication in at least one of their layers, which can generate a relatively precise result by analyzing a huge amount of images, and thus is very suitable for our research. The experimental results demonstrate that the proposed model has high credibility and can provide a decision-making basis for the selection of edible fungi, so as to reduce the morbidity and mortality caused by eating poisonous mushrooms. We also open source our hand collected mushroom image dataset so that peer researchers can also deploy their own model to advance poisonous mushroom identification.

Abstract (translated)

URL

https://arxiv.org/abs/2210.10351

PDF

https://arxiv.org/pdf/2210.10351.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot