Paper Reading AI Learner

Schema-aware Reference as Prompt Improves Data-Efficient Relational Triple and Event Extraction

2022-10-19 16:40:28
Yunzhi Yao, Shengyu Mao, Xiang Chen, Ningyu Zhang, Shumin Deng, Huajun Chen

Abstract

Information Extraction, which aims to extract structural relational triple or event from unstructured texts, often suffers from data scarcity issues. With the development of pre-trained language models, many prompt-based approaches to data-efficient information extraction have been proposed and achieved impressive performance. However, existing prompt learning methods for information extraction are still susceptible to several potential limitations: (i) semantic gap between natural language and output structure knowledge with pre-defined schema; (ii) representation learning with locally individual instances limits the performance given the insufficient features. In this paper, we propose a novel approach of schema-aware Reference As Prompt (RAP), which dynamically leverage schema and knowledge inherited from global (few-shot) training data for each sample. Specifically, we propose a schema-aware reference store, which unifies symbolic schema and relevant textual instances. Then, we employ a dynamic reference integration module to retrieve pertinent knowledge from the datastore as prompts during training and inference. Experimental results demonstrate that RAP can be plugged into various existing models and outperforms baselines in low-resource settings on five datasets of relational triple extraction and event extraction. In addition, we provide comprehensive empirical ablations and case analysis regarding different types and scales of knowledge in order to better understand the mechanisms of RAP. Code is available in this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2210.10709

PDF

https://arxiv.org/pdf/2210.10709.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot