Paper Reading AI Learner

i-MAE: Are Latent Representations in Masked Autoencoders Linearly Separable?

2022-10-20 17:59:54
Kevin Zhang, Zhiqiang Shen

Abstract

Masked image modeling (MIM) has been recognized as a strong and popular self-supervised pre-training approach in the vision domain. However, the interpretability of the mechanism and properties of the learned representations by such a scheme are so far not well-explored. In this work, through comprehensive experiments and empirical studies on Masked Autoencoders (MAE), we address two critical questions to explore the behaviors of the learned representations: (i) Are the latent representations in Masked Autoencoders linearly separable if the input is a mixture of two images instead of one? This can be concrete evidence used to explain why MAE-learned representations have superior performance on downstream tasks, as proven by many literature impressively. (ii) What is the degree of semantics encoded in the latent feature space by Masked Autoencoders? To explore these two problems, we propose a simple yet effective Interpretable MAE (i-MAE) framework with a two-way image reconstruction and a latent feature reconstruction with distillation loss to help us understand the behaviors inside MAE's structure. Extensive experiments are conducted on CIFAR-10/100, Tiny-ImageNet and ImageNet-1K datasets to verify the observations we discovered. Furthermore, in addition to qualitatively analyzing the characteristics of the latent representations, we examine the existence of linear separability and the degree of semantics in the latent space by proposing two novel metrics. The surprising and consistent results across the qualitative and quantitative experiments demonstrate that i-MAE is a superior framework design for interpretability research of MAE frameworks, as well as achieving better representational ability. Code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2210.11470

PDF

https://arxiv.org/pdf/2210.11470.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot