Paper Reading AI Learner

Non-Iterative Scribble-Supervised Learning with Pacing Pseudo-Masks for Medical Image Segmentation

2022-10-20 01:57:44
Zefan Yang, Di Lin, Dong Ni, Yi Wang

Abstract

Scribble-supervised medical image segmentation tackles the limitation of sparse masks. Conventional approaches alternate between: labeling pseudo-masks and optimizing network parameters. However, such iterative two-stage paradigm is unwieldy and could be trapped in poor local optima since the networks undesirably regress to the erroneous pseudo-masks. To address these issues, we propose a non-iterative method where a stream of varying (pacing) pseudo-masks teach a network via consistency training, named PacingPseudo. Our motivation lies first in a non-iterative process. Interestingly, it can be achieved gracefully by a siamese architecture, wherein a stream of pseudo-masks naturally assimilate a stream of predicted masks during training. Second, we make the consistency training effective with two necessary designs: (i) entropy regularization to obtain high-confidence pseudo-masks for effective teaching; and (ii) distorted augmentations to create discrepancy between the pseudo-mask and predicted-mask streams for consistency regularization. Third, we devise a new memory bank mechanism that provides an extra source of ensemble features to complement scarce labeled pixels. The efficacy of the proposed PacingPseudo is validated on three public medical image datasets, including the segmentation tasks of abdominal multi-organs, cardiac structures, and myocardium. Extensive experiments demonstrate our PacingPseudo improves the baseline by large margins and consistently outcompetes several previous methods. In some cases, our PacingPseudo achieves comparable performance with its fully-supervised counterparts, showing the feasibility of our method for the challenging scribble-supervised segmentation applications. The code and scribble annotations will be publicly available.

Abstract (translated)

URL

https://arxiv.org/abs/2210.10956

PDF

https://arxiv.org/pdf/2210.10956.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot