Paper Reading AI Learner

Speech Emotion Recognition via an Attentive Time-Frequency Neural Network

2022-10-22 12:18:26
Cheng Lu, Wenming Zheng, Hailun Lian, Yuan Zong, Chuangao Tang, Sunan Li, Yan Zhao

Abstract

Spectrogram is commonly used as the input feature of deep neural networks to learn the high(er)-level time-frequency pattern of speech signal for speech emotion recognition (SER). \textcolor{black}{Generally, different emotions correspond to specific energy activations both within frequency bands and time frames on spectrogram, which indicates the frequency and time domains are both essential to represent the emotion for SER. However, recent spectrogram-based works mainly focus on modeling the long-term dependency in time domain, leading to these methods encountering the following two issues: (1) neglecting to model the emotion-related correlations within frequency domain during the time-frequency joint learning; (2) ignoring to capture the specific frequency bands associated with emotions.} To cope with the issues, we propose an attentive time-frequency neural network (ATFNN) for SER, including a time-frequency neural network (TFNN) and time-frequency attention. Specifically, aiming at the first issue, we design a TFNN with a frequency-domain encoder (F-Encoder) based on the Transformer encoder and a time-domain encoder (T-Encoder) based on the Bidirectional Long Short-Term Memory (Bi-LSTM). The F-Encoder and T-Encoder model the correlations within frequency bands and time frames, respectively, and they are embedded into a time-frequency joint learning strategy to obtain the time-frequency patterns for speech emotions. Moreover, to handle the second issue, we also adopt time-frequency attention with a frequency-attention network (F-Attention) and a time-attention network (T-Attention) to focus on the emotion-related frequency band ranges and time frame ranges, which can enhance the discriminability of speech emotion features.

Abstract (translated)

URL

https://arxiv.org/abs/2210.12430

PDF

https://arxiv.org/pdf/2210.12430.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot