Paper Reading AI Learner

Flexible Android Malware Detection Model based on Generative Adversarial Networks with Code Tensor

2022-10-25 03:20:34
Zhao Yang, Fengyang Deng, Linxi Han

Abstract

The behavior of malware threats is gradually increasing, heightened the need for malware detection. However, existing malware detection methods only target at the existing malicious samples, the detection of fresh malicious code and variants of malicious code is limited. In this paper, we propose a novel scheme that detects malware and its variants efficiently. Based on the idea of the generative adversarial networks (GANs), we obtain the `true' sample distribution that satisfies the characteristics of the real malware, use them to deceive the discriminator, thus achieve the defense against malicious code attacks and improve malware detection. Firstly, a new Android malware APK to image texture feature extraction segmentation method is proposed, which is called segment self-growing texture segmentation algorithm. Secondly, tensor singular value decomposition (tSVD) based on the low-tubal rank transforms malicious features with different sizes into a fixed third-order tensor uniformly, which is entered into the neural network for training and learning. Finally, a flexible Android malware detection model based on GANs with code tensor (MTFD-GANs) is proposed. Experiments show that the proposed model can generally surpass the traditional malware detection model, with a maximum improvement efficiency of 41.6\%. At the same time, the newly generated samples of the GANs generator greatly enrich the sample diversity. And retraining malware detector can effectively improve the detection efficiency and robustness of traditional models.

Abstract (translated)

URL

https://arxiv.org/abs/2210.14225

PDF

https://arxiv.org/pdf/2210.14225.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot