Paper Reading AI Learner

An Intelligent Decision Support Ensemble Voting Model for Coronary Artery Disease Prediction in Smart Healthcare Monitoring Environments

2022-10-25 21:09:34
Anas Maach, Jamila Elalami, Noureddine Elalami, El Houssine El Mazoudi

Abstract

Coronary artery disease (CAD) is one of the most common cardiac diseases worldwide and causes disability and economic burden. It is the world's leading and most serious cause of mortality, with approximately 80% of deaths reported in low- and middle-income countries. The preferred and most precise diagnostic tool for CAD is angiography, but it is invasive, expensive, and technically demanding. However, the research community is increasingly interested in the computer-aided diagnosis of CAD via the utilization of machine learning (ML) methods. The purpose of this work is to present an e-diagnosis tool based on ML algorithms that can be used in a smart healthcare monitoring system. We applied the most accurate machine learning methods that have shown superior results in the literature to different medical datasets such as RandomForest, XGboost, MLP, J48, AdaBoost, NaiveBayes, LogitBoost, KNN. Every single classifier can be efficient on a different dataset. Thus, an ensemble model using majority voting was designed to take advantage of the well-performed single classifiers, Ensemble learning aims to combine the forecasts of multiple individual classifiers to achieve higher performance than individual classifiers in terms of precision, specificity, sensitivity, and accuracy; furthermore, we have benchmarked our proposed model with the most efficient and well-known ensemble models, such as Bagging, Stacking methods based on the cross-validation technique, The experimental results confirm that the ensemble majority voting approach based on the top 3 classifiers: MultilayerPerceptron, RandomForest, and AdaBoost, achieves the highest accuracy of 88,12% and outperforms all other classifiers. This study demonstrates that the majority voting ensemble approach proposed above is the most accurate machine learning classification approach for the prediction and detection of coronary artery disease.

Abstract (translated)

URL

https://arxiv.org/abs/2210.14906

PDF

https://arxiv.org/pdf/2210.14906.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot