Paper Reading AI Learner

An Artificial Intelligence driven Learning Analytics Method to Examine the Collaborative Problem solving Process from a Complex Adaptive Systems Perspective

2022-10-28 11:13:05
Fan Ouyang, Weiqi Xu, Mutlu Cukurova

Abstract

Collaborative problem solving (CPS) enables student groups to complete learning tasks, construct knowledge, and solve problems. Previous research has argued the importance to examine the complexity of CPS, including its multimodality, dynamics, and synergy from the complex adaptive systems perspective. However, there is limited empirical research examining the adaptive and temporal characteristics of CPS which might lead to an oversimplified representation of the real complexity of the CPS process. To further understand the nature of CPS in online interaction settings, this research collected multimodal process and performance data (i.e., verbal audios, computer screen recordings, concept map data) and proposed a three-layered analytical framework that integrated AI algorithms with learning analytics to analyze the regularity of groups collaboration patterns. The results detected three types of collaborative patterns in groups, namely the behaviour-oriented collaborative pattern (Type 1) associated with medium-level performance, the communication - behaviour - synergistic collaborative pattern (Type 2) associated with high-level performance, and the communication-oriented collaborative pattern (Type 3) associated with low-level performance. The research further highlighted the multimodal, dynamic, and synergistic characteristics of groups collaborative patterns to explain the emergence of an adaptive, self-organizing system during the CPS process.

Abstract (translated)

URL

https://arxiv.org/abs/2210.16059

PDF

https://arxiv.org/pdf/2210.16059.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot