Paper Reading AI Learner

Clenshaw Graph Neural Networks

2022-10-29 06:32:39
Yuhe Guo, Zhewei Wei

Abstract

Graph Convolutional Networks (GCNs), which use a message-passing paradigm with stacked convolution layers, are foundational methods for learning graph representations. Recent GCN models use various residual connection techniques to alleviate the model degradation problem such as over-smoothing and gradient vanishing. Existing residual connection techniques, however, fail to make extensive use of underlying graph structure as in the graph spectral domain, which is critical for obtaining satisfactory results on heterophilic graphs. In this paper, we introduce ClenshawGCN, a GNN model that employs the Clenshaw Summation Algorithm to enhance the expressiveness of the GCN model. ClenshawGCN equips the standard GCN model with two straightforward residual modules: the adaptive initial residual connection and the negative second-order residual connection. We show that by adding these two residual modules, ClenshawGCN implicitly simulates a polynomial filter under the Chebyshev basis, giving it at least as much expressive power as polynomial spectral GNNs. In addition, we conduct comprehensive experiments to demonstrate the superiority of our model over spatial and spectral GNN models.

Abstract (translated)

URL

https://arxiv.org/abs/2210.16508

PDF

https://arxiv.org/pdf/2210.16508.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot