Paper Reading AI Learner

2D and 3D CT Radiomic Features Performance Comparison in Characterization of Gastric Cancer: A Multi-center Study

2022-10-29 16:09:07
Lingwei Meng, Di Dong, Xin Chen, Mengjie Fang, Rongpin Wang, Jing Li, Zaiyi Liu, Jie Tian

Abstract

Objective: Radiomics, an emerging tool for medical image analysis, is potential towards precisely characterizing gastric cancer (GC). Whether using one-slice 2D annotation or whole-volume 3D annotation remains a long-time debate, especially for heterogeneous GC. We comprehensively compared 2D and 3D radiomic features' representation and discrimination capacity regarding GC, via three tasks. Methods: Four-center 539 GC patients were retrospectively enrolled and divided into the training and validation cohorts. From 2D or 3D regions of interest (ROIs) annotated by radiologists, radiomic features were extracted respectively. Feature selection and model construction procedures were customed for each combination of two modalities (2D or 3D) and three tasks. Subsequently, six machine learning models (Model_2D^LNM, Model_3D^LNM; Model_2D^LVI, Model_3D^LVI; Model_2D^pT, Model_3D^pT) were derived and evaluated to reflect modalities' performances in characterizing GC. Furthermore, we performed an auxiliary experiment to assess modalities' performances when resampling spacing is different. Results: Regarding three tasks, the yielded areas under the curve (AUCs) were: Model_2D^LNM's 0.712 (95% confidence interval, 0.613-0.811), Model_3D^LNM's 0.680 (0.584-0.775); Model_2D^LVI's 0.677 (0.595-0.761), Model_3D^LVI's 0.615 (0.528-0.703); Model_2D^pT's 0.840 (0.779-0.901), Model_3D^pT's 0.813 (0.747-0.879). Moreover, the auxiliary experiment indicated that Models_2D are statistically more advantageous than Models3D with different resampling spacings. Conclusion: Models constructed with 2D radiomic features revealed comparable performances with those constructed with 3D features in characterizing GC. Significance: Our work indicated that time-saving 2D annotation would be the better choice in GC, and provided a related reference to further radiomics-based researches.

Abstract (translated)

URL

https://arxiv.org/abs/2210.16640

PDF

https://arxiv.org/pdf/2210.16640.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot