Paper Reading AI Learner

Teacher-student curriculum learning for reinforcement learning

2022-10-31 14:45:39
Yanick Schraner

Abstract

Reinforcement learning (rl) is a popular paradigm for sequential decision making problems. The past decade's advances in rl have led to breakthroughs in many challenging domains such as video games, board games, robotics, and chip design. The sample inefficiency of deep reinforcement learning methods is a significant obstacle when applying rl to real-world problems. Transfer learning has been applied to reinforcement learning such that the knowledge gained in one task can be applied when training in a new task. Curriculum learning is concerned with sequencing tasks or data samples such that knowledge can be transferred between those tasks to learn a target task that would otherwise be too difficult to solve. Designing a curriculum that improves sample efficiency is a complex problem. In this thesis, we propose a teacher-student curriculum learning setting where we simultaneously train a teacher that selects tasks for the student while the student learns how to solve the selected task. Our method is independent of human domain knowledge and manual curriculum design. We evaluated our methods on two reinforcement learning benchmarks: grid world and the challenging Google Football environment. With our method, we can improve the sample efficiency and generality of the student compared to tabula-rasa reinforcement learning.

Abstract (translated)

URL

https://arxiv.org/abs/2210.17368

PDF

https://arxiv.org/pdf/2210.17368.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot