Paper Reading AI Learner

Using coevolution and substitution of the fittest for health and well-being recommender systems

2022-11-01 12:16:11
Hugo Alcaraz-Herrera, John Cartlidge

Abstract

This research explores substitution of the fittest (SF), a technique designed to counteract the problem of disengagement in two-population competitive coevolutionary genetic algorithms. SF is domain-independent and requires no calibration. We first perform a controlled comparative evaluation of SF's ability to maintain engagement and discover optimal solutions in a minimal toy domain. Experimental results demonstrate that SF is able to maintain engagement better than other techniques in the literature. We then address the more complex real-world problem of evolving recommendations for health and well-being. We introduce a coevolutionary extension of EvoRecSys, a previously published evolutionary recommender system. We demonstrate that SF is able to maintain engagement better than other techniques in the literature, and the resultant recommendations using SF are higher quality and more diverse than those produced by EvoRecSys.

Abstract (translated)

URL

https://arxiv.org/abs/2211.00414

PDF

https://arxiv.org/pdf/2211.00414.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot