Paper Reading AI Learner

Evaluating the Effectiveness of Automated Identity Masking Methods with Human Perception

2019-02-19 09:34:12
Kimberley D. Orsten-Hooge, Asal Baragchizadeh, Thomas P. Karnowski, David S. Bolme, Regina Ferrell, Parisa R. Jesudasen, Alice J. O'Toole

Abstract

Face de-identification algorithms have been developed in response to the prevalent use of public video recordings and surveillance cameras. Here, we evaluated the success of identity masking in the context of monitoring drivers as they actively operate a motor vehicle. We compared the effectiveness of eight de-identification algorithms using human perceivers. The algorithms we tested included the personalized supervised bilinear regression method for Facial Action Transfer (FAT), the DMask method, which renders a generic avatar face, and two edge-detection methods implemented with and without image polarity inversion (Canny, Scharr). We also used an Overmask approach that combined the FAT and Canny methods. We compared these identity masking methods to identification of an unmasked video of the driver. Human subjects were tested in a standard face recognition experiment in which they learned driver identities with a high resolution (studio-style) image, and were tested subsequently on their ability to recognize masked and unmasked videos of these individuals driving. All masking methods lowered identification accuracy substantially, relative to the unmasked video. The most successful methods, DMask and Canny, lowered human identification performance to near random. In all cases, identifications were made with stringent decision criteria indicating the subjects had low confidence in their decisions. We conclude that carefully tested de-identification approaches, used alone or in combination, can be an effective tool for protecting the privacy of individuals captured in videos. Future work should examine how the most effective methods fare in preserving facial action recognition.

Abstract (translated)

URL

https://arxiv.org/abs/1902.06967

PDF

https://arxiv.org/pdf/1902.06967.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot