Paper Reading AI Learner

How Technology Impacts and Compares to Humans in Socially Consequential Arenas

2022-11-02 18:01:11
Samuel Dooley

Abstract

One of the main promises of technology development is for it to be adopted by people, organizations, societies, and governments -- incorporated into their life, work stream, or processes. Often, this is socially beneficial as it automates mundane tasks, frees up more time for other more important things, or otherwise improves the lives of those who use the technology. However, these beneficial results do not apply in every scenario and may not impact everyone in a system the same way. Sometimes a technology is developed which produces both benefits and inflicts some harm. These harms may come at a higher cost to some people than others, raising the question: {\it how are benefits and harms weighed when deciding if and how a socially consequential technology gets developed?} The most natural way to answer this question, and in fact how people first approach it, is to compare the new technology to what used to exist. As such, in this work, I make comparative analyses between humans and machines in three scenarios and seek to understand how sentiment about a technology, performance of that technology, and the impacts of that technology combine to influence how one decides to answer my main research question.

Abstract (translated)

URL

https://arxiv.org/abs/2211.03554

PDF

https://arxiv.org/pdf/2211.03554.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot