Paper Reading AI Learner

Much Easier Said Than Done: Falsifying the Causal Relevance of Linear Decoding Methods

2022-11-08 16:43:02
Lucas Hayne, Abhijit Suresh, Hunar Jain, Rahul Kumar, R. McKell Carter

Abstract

Linear classifier probes are frequently utilized to better understand how neural networks function. Researchers have approached the problem of determining unit importance in neural networks by probing their learned, internal representations. Linear classifier probes identify highly selective units as the most important for network function. Whether or not a network actually relies on high selectivity units can be tested by removing them from the network using ablation. Surprisingly, when highly selective units are ablated they only produce small performance deficits, and even then only in some cases. In spite of the absence of ablation effects for selective neurons, linear decoding methods can be effectively used to interpret network function, leaving their effectiveness a mystery. To falsify the exclusive role of selectivity in network function and resolve this contradiction, we systematically ablate groups of units in subregions of activation space. Here, we find a weak relationship between neurons identified by probes and those identified by ablation. More specifically, we find that an interaction between selectivity and the average activity of the unit better predicts ablation performance deficits for groups of units in AlexNet, VGG16, MobileNetV2, and ResNet101. Linear decoders are likely somewhat effective because they overlap with those units that are causally important for network function. Interpretability methods could be improved by focusing on causally important units.

Abstract (translated)

URL

https://arxiv.org/abs/2211.04367

PDF

https://arxiv.org/pdf/2211.04367.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot