Paper Reading AI Learner

Accountable and Explainable Methods for Complex Reasoning over Text

2022-11-09 15:14:52
Pepa Atanasova

Abstract

A major concern of Machine Learning (ML) models is their opacity. They are deployed in an increasing number of applications where they often operate as black boxes that do not provide explanations for their predictions. Among others, the potential harms associated with the lack of understanding of the models' rationales include privacy violations, adversarial manipulations, and unfair discrimination. As a result, the accountability and transparency of ML models have been posed as critical desiderata by works in policy and law, philosophy, and computer science. In computer science, the decision-making process of ML models has been studied by developing accountability and transparency methods. Accountability methods, such as adversarial attacks and diagnostic datasets, expose vulnerabilities of ML models that could lead to malicious manipulations or systematic faults in their predictions. Transparency methods explain the rationales behind models' predictions gaining the trust of relevant stakeholders and potentially uncovering mistakes and unfairness in models' decisions. To this end, transparency methods have to meet accountability requirements as well, e.g., being robust and faithful to the underlying rationales of a model. This thesis presents my research that expands our collective knowledge in the areas of accountability and transparency of ML models developed for complex reasoning tasks over text.

Abstract (translated)

URL

https://arxiv.org/abs/2211.04946

PDF

https://arxiv.org/pdf/2211.04946.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot