Paper Reading AI Learner

Towards automatic generation of Piping and Instrumentation Diagrams with Artificial Intelligence

2022-10-26 10:03:15
Edwin Hirtreiter, Lukas Schulze Balhorn, Artur M. Schweidtmann

Abstract

Developing Piping and Instrumentation Diagrams (P&IDs) is a crucial step during the development of chemical processes. Currently, this is a tedious, manual, and time-consuming task. We propose a novel, completely data-driven method for the prediction of control structures. Our methodology is inspired by end-to-end transformer-based human language translation models. We cast the control structure prediction as a translation task where Process Flow Diagrams (PFDs) are translated to P&IDs. To use established transformer-based language translation models, we represent the P&IDs and PFDs as strings using our recently proposed SFILES 2.0 notation. Model training is performed in a transfer learning approach. Firstly, we pre-train our model using generated P&IDs to learn the grammatical structure of the process diagrams. Thereafter, the model is fine-tuned leveraging transfer learning on real P&IDs. The model achieved a top-5 accuracy of 74.8% on 10,000 generated P&IDs and 89.2% on 100,000 generated P&IDs. These promising results show great potential for AI-assisted process engineering. The tests on a dataset of 312 real P&IDs indicate the need of a larger P&IDs dataset for industry applications.

Abstract (translated)

URL

https://arxiv.org/abs/2211.05583

PDF

https://arxiv.org/pdf/2211.05583.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot