Paper Reading AI Learner

NeuroCERIL: Robotic Imitation Learning via Hierarchical Cause-Effect Reasoning in Programmable Attractor Neural Networks

2022-11-11 19:56:11
Gregory P. Davis, Garrett E. Katz, Rodolphe J. Gentili, James A. Reggia

Abstract

Imitation learning allows social robots to learn new skills from human teachers without substantial manual programming, but it is difficult for robotic imitation learning systems to generalize demonstrated skills as well as human learners do. Contemporary neurocomputational approaches to imitation learning achieve limited generalization at the cost of data-intensive training, and often produce opaque models that are difficult to understand and debug. In this study, we explore the viability of developing purely-neural controllers for social robots that learn to imitate by reasoning about the underlying intentions of demonstrated behaviors. We present NeuroCERIL, a brain-inspired neurocognitive architecture that uses a novel hypothetico-deductive reasoning procedure to produce generalizable and human-readable explanations for demonstrated behavior. This approach combines bottom-up abductive inference with top-down predictive verification, and captures important aspects of human causal reasoning that are relevant to a broad range of cognitive domains. Our empirical results demonstrate that NeuroCERIL can learn various procedural skills in a simulated robotic imitation learning domain. We also show that its causal reasoning procedure is computationally efficient, and that its memory use is dominated by highly transient short-term memories, much like human working memory. We conclude that NeuroCERIL is a viable neural model of human-like imitation learning that can improve human-robot collaboration and contribute to investigations of the neurocomputational basis of human cognition.

Abstract (translated)

URL

https://arxiv.org/abs/2211.06462

PDF

https://arxiv.org/pdf/2211.06462.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot