Paper Reading AI Learner

Unsupervised Method for Intra-patient Registration of Brain Magnetic Resonance Images based on Objective Function Weighting by Inverse Consistency: Contribution to the BraTS-Reg Challenge

2022-11-14 14:12:52
Marek Wodzinski, Artur Jurgas, Niccolo Marini, Manfredo Atzori, Henning Muller

Abstract

Registration of brain scans with pathologies is difficult, yet important research area. The importance of this task motivated researchers to organize the BraTS-Reg challenge, jointly with IEEE ISBI 2022 and MICCAI 2022 conferences. The organizers introduced the task of aligning pre-operative to follow-up magnetic resonance images of glioma. The main difficulties are connected with the missing data leading to large, nonrigid, and noninvertible deformations. In this work, we describe our contributions to both the editions of the BraTS-Reg challenge. The proposed method is based on combined deep learning and instance optimization approaches. First, the instance optimization enriches the state-of-the-art LapIRN method to improve the generalizability and fine-details preservation. Second, an additional objective function weighting is introduced, based on the inverse consistency. The proposed method is fully unsupervised and exhibits high registration quality and robustness. The quantitative results on the external validation set are: (i) IEEE ISBI 2022 edition: 1.85, and 0.86, (ii) MICCAI 2022 edition: 1.71, and 0.86, in terms of the mean of median absolute error and robustness respectively. The method scored the 1st place during the IEEE ISBI 2022 version of the challenge and the 3rd place during the MICCAI 2022. Future work could transfer the inverse consistency-based weighting directly into the deep network training.

Abstract (translated)

URL

https://arxiv.org/abs/2211.07386

PDF

https://arxiv.org/pdf/2211.07386.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot