Paper Reading AI Learner

Line Drawing Guided Progressive Inpainting of Mural Damages

2022-11-12 12:22:11
Luxi Li, Qin Zou, Fan Zhang, Hongkai Yu, Long Chen, Chengfang Song, Xianfeng Huang, Xiaoguang Wang

Abstract

Mural image inpainting refers to repairing the damage or missing areas in a mural image to restore the visual appearance. Most existing image-inpainting methods tend to take a target image as the only input and directly repair the damage to generate a visually plausible result. These methods obtain high performance in restoration or completion of some specific objects, e.g., human face, fabric texture, and printed texts, etc., however, are not suitable for repairing murals with varied subjects, especially for murals with large damaged areas. Moreover, due to the discrete colors in paints, mural inpainting may suffer from apparent color bias as compared to natural image inpainting. To this end, in this paper, we propose a line drawing guided progressive mural inpainting method. It divides the inpainting process into two steps: structure reconstruction and color correction, executed by a structure reconstruction network (SRN) and a color correction network (CCN), respectively. In the structure reconstruction, line drawings are used by SRN as a guarantee for large-scale content authenticity and structural stability. In the color correction, CCN operates a local color adjustment for missing pixels which reduces the negative effects of color bias and edge jumping. The proposed approach is evaluated against the current state-of-the-art image inpainting methods. Qualitative and quantitative results demonstrate the superiority of the proposed method in mural image inpainting. The codes and data are available at {this https URL}.

Abstract (translated)

URL

https://arxiv.org/abs/2211.06649

PDF

https://arxiv.org/pdf/2211.06649.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot