Paper Reading AI Learner

FolkScope: Intention Knowledge Graph Construction for Discovering E-commerce Commonsense

2022-11-15 17:20:40
Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai, Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao, Bing Yin

Abstract

As stated by Oren Etzioni, ``commonsense is the dark matter of artificial intelligence''. In e-commerce, understanding users' needs or intentions requires substantial commonsense knowledge, e.g., ``A user bought an iPhone and a compatible case because the user wanted the phone to be protected''. In this paper, we present FolkScope, an intention knowledge graph construction framework, to reveal the structure of humans' minds about purchasing items on e-commerce platforms such as Amazon. As commonsense knowledge is usually ineffable and not expressed explicitly, it is challenging to perform any kind of information extraction. Thus, we propose a new approach that leverages the generation power of large-scale language models and human-in-the-loop annotations to semi-automatically construct the knowledge graph. We annotate a large amount of assertions for both plausibility and typicality of an intention that can explain a purchasing or co-purchasing behavior, where the intention can be an open reason or a predicate falling into one of 18 categories aligning with ConceptNet, e.g., IsA, MadeOf, UsedFor, etc. Then we populate the annotated information to all automatically generated ones, and further structurize the assertions using pattern mining and conceptualization to form more condensed and abstractive knowledge. We evaluate our knowledge graph using both intrinsic quality measures and a downstream application, i.e., recommendation. The comprehensive study shows that our knowledge graph can well model e-commerce commonsense knowledge and can have many potential applications.

Abstract (translated)

URL

https://arxiv.org/abs/2211.08316

PDF

https://arxiv.org/pdf/2211.08316.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot