Paper Reading AI Learner

Real Estate Attribute Prediction from Multiple Visual Modalities with Missing Data

2022-11-16 16:24:17
Eric Stumpe, Miroslav Despotovic, Zedong Zhang, Matthias Zeppelzauer

Abstract

The assessment and valuation of real estate requires large datasets with real estate information. Unfortunately, real estate databases are usually sparse in practice, i.e., not for each property every important attribute is available. In this paper, we study the potential of predicting high-level real estate attributes from visual data, specifically from two visual modalities, namely indoor (interior) and outdoor (facade) photos. We design three models using different multimodal fusion strategies and evaluate them for three different use cases. Thereby, a particular challenge is to handle missing modalities. We evaluate different fusion strategies, present baselines for the different prediction tasks, and find that enriching the training data with additional incomplete samples can lead to an improvement in prediction accuracy. Furthermore, the fusion of information from indoor and outdoor photos results in a performance boost of up to 5% in Macro F1-score.

Abstract (translated)

URL

https://arxiv.org/abs/2211.09018

PDF

https://arxiv.org/pdf/2211.09018.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot