Paper Reading AI Learner

Learning to Communicate with Intent: An Introduction

2022-11-17 16:02:13
Miguel Angel Gutierrez-Estevez, Yiqun Wu, Chan Zhou

Abstract

We propose a novel framework to learn how to communicate with intent, i.e., to transmit messages over a wireless communication channel based on the end-goal of the communication. This stays in stark contrast to classical communication systems where the objective is to reproduce at the receiver side either exactly or approximately the message sent by the transmitter, regardless of the end-goal. Our procedure is general enough that can be adapted to any type of goal or task, so long as the said task is a (almost-everywhere) differentiable function over which gradients can be propagated. We focus on supervised learning and reinforcement learning (RL) tasks, and propose algorithms to learn the communication system and the task jointly in an end-to-end manner. We then delve deeper into the transmission of images and propose two systems, one for the classification of images and a second one to play an Atari game based on RL. The performance is compared with a joint source and channel coding (JSCC) communication system designed to minimize the reconstruction error, and results show overall great improvement. Further, for the RL task, we show that while a JSCC strategy is not better than a random action selection strategy, with our approach we get close to the upper bound even for low SNRs.

Abstract (translated)

URL

https://arxiv.org/abs/2211.09613

PDF

https://arxiv.org/pdf/2211.09613.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot