Paper Reading AI Learner

Contrastive Knowledge Graph Error Detection

2022-11-18 05:01:19
Qinggang Zhang, Junnan Dong, Keyu Duan, Xiao Huang, Yezi Liu, Linchuan Xu

Abstract

Knowledge Graph (KG) errors introduce non-negligible noise, severely affecting KG-related downstream tasks. Detecting errors in KGs is challenging since the patterns of errors are unknown and diverse, while ground-truth labels are rare or even unavailable. A traditional solution is to construct logical rules to verify triples, but it is not generalizable since different KGs have distinct rules with domain knowledge involved. Recent studies focus on designing tailored detectors or ranking triples based on KG embedding loss. However, they all rely on negative samples for training, which are generated by randomly replacing the head or tail entity of existing triples. Such a negative sampling strategy is not enough for prototyping practical KG errors, e.g., (Bruce_Lee, place_of_birth, China), in which the three elements are often relevant, although mismatched. We desire a more effective unsupervised learning mechanism tailored for KG error detection. To this end, we propose a novel framework - ContrAstive knowledge Graph Error Detection (CAGED). It introduces contrastive learning into KG learning and provides a novel way of modeling KG. Instead of following the traditional setting, i.e., considering entities as nodes and relations as semantic edges, CAGED augments a KG into different hyper-views, by regarding each relational triple as a node. After joint training with KG embedding and contrastive learning loss, CAGED assesses the trustworthiness of each triple based on two learning signals, i.e., the consistency of triple representations across multi-views and the self-consistency within the triple. Extensive experiments on three real-world KGs show that CAGED outperforms state-of-the-art methods in KG error detection. Our codes and datasets are available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2211.10030

PDF

https://arxiv.org/pdf/2211.10030.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot