Paper Reading AI Learner

Efficient shallow learning as an alternative to deep learning

2022-11-15 10:10:27
Yuval Meir, Ofek Tevet, Yarden Tzach, Shiri Hodassman, Ronit D. Gross, Ido Kanter

Abstract

The realization of complex classification tasks requires training of deep learning (DL) architectures consisting of tens or even hundreds of convolutional and fully connected hidden layers, which is far from the reality of the human brain. According to the DL rationale, the first convolutional layer reveals localized patterns in the input and large-scale patterns in the following layers, until it reliably characterizes a class of inputs. Here, we demonstrate that with a fixed ratio between the depths of the first and second convolutional layers, the error rates of the generalized shallow LeNet architecture, consisting of only five layers, decay as a power law with the number of filters in the first convolutional layer. The extrapolation of this power law indicates that the generalized LeNet can achieve small error rates that were previously obtained for the CIFAR-10 database using DL architectures. A power law with a similar exponent also characterizes the generalized VGG-16 architecture. However, this results in a significantly increased number of operations required to achieve a given error rate with respect to LeNet. This power law phenomenon governs various generalized LeNet and VGG-16 architectures, hinting at its universal behavior and suggesting a quantitative hierarchical time-space complexity among machine learning architectures. Additionally, the conservation law along the convolutional layers, which is the square-root of their size times their depth, is found to asymptotically minimize error rates. The efficient shallow learning that is demonstrated in this study calls for further quantitative examination using various databases and architectures and its accelerated implementation using future dedicated hardware developments.

Abstract (translated)

URL

https://arxiv.org/abs/2211.11106

PDF

https://arxiv.org/pdf/2211.11106.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot