Paper Reading AI Learner

Breaking the Representation Bottleneck of Chinese Characters: Neural Machine Translation with Stroke Sequence Modeling

2022-11-23 08:49:43
Zhijun Wang, Xuebo Liu, Min Zhang

Abstract

Existing research generally treats Chinese character as a minimum unit for representation. However, such Chinese character representation will suffer two bottlenecks: 1) Learning bottleneck, the learning cannot benefit from its rich internal features (e.g., radicals and strokes); and 2) Parameter bottleneck, each individual character has to be represented by a unique vector. In this paper, we introduce a novel representation method for Chinese characters to break the bottlenecks, namely StrokeNet, which represents a Chinese character by a Latinized stroke sequence (e.g., "ao1 (concave)" to "ajaie" and "tu1 (convex)" to "aeaqe"). Specifically, StrokeNet maps each stroke to a specific Latin character, thus allowing similar Chinese characters to have similar Latin representations. With the introduction of StrokeNet to neural machine translation (NMT), many powerful but not applicable techniques to non-Latin languages (e.g., shared subword vocabulary learning and ciphertext-based data augmentation) can now be perfectly implemented. Experiments on the widely-used NIST Chinese-English, WMT17 Chinese-English and IWSLT17 Japanese-English NMT tasks show that StrokeNet can provide a significant performance boost over the strong baselines with fewer model parameters, achieving 26.5 BLEU on the WMT17 Chinese-English task which is better than any previously reported results without using monolingual data. Code and scripts are freely available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2211.12781

PDF

https://arxiv.org/pdf/2211.12781.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot