Paper Reading AI Learner

A comparative study of source-finding techniques in HI emission line cubes using SoFiA, MTObjects, and supervised deep learning

2022-11-23 09:45:07
J.A. Barkai, M.A.W. Verheijen, E.T. Martínez, M.H.F. Wilkinson

Abstract

The 21 cm spectral line emission of atomic neutral hydrogen (HI) is one of the primary wavelengths observed in radio astronomy. However, the signal is intrinsically faint and the HI content of galaxies depends on the cosmic environment, requiring large survey volumes and survey depth to investigate the HI Universe. As the amount of data coming from these surveys continues to increase with technological improvements, so does the need for automatic techniques for identifying and characterising HI sources while considering the tradeoff between completeness and purity. This study aimed to find the optimal pipeline for finding and masking the most sources with the best mask quality and the fewest artefacts in 3D neutral hydrogen cubes. Various existing methods were explored in an attempt to create a pipeline to optimally identify and mask the sources in 3D neutral hydrogen 21 cm spectral line data cubes. Two traditional source-finding methods were tested, SoFiA and MTObjects, as well as a new supervised deep learning approach, in which a 3D convolutional neural network architecture, known as V-Net was used. These three source-finding methods were further improved by adding a classical machine learning classifier as a post-processing step to remove false positive detections. The pipelines were tested on HI data cubes from the Westerbork Synthesis Radio Telescope with additional inserted mock galaxies. SoFiA combined with a random forest classifier provided the best results, with the V-Net-random forest combination a close second. We suspect this is due to the fact that there are many more mock sources in the training set than real sources. There is, therefore, room to improve the quality of the V-Net network with better-labelled data such that it can potentially outperform SoFiA.

Abstract (translated)

URL

https://arxiv.org/abs/2211.12809

PDF

https://arxiv.org/pdf/2211.12809.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot