Paper Reading AI Learner

Reinforcement Learning Agent Design and Optimization with Bandwidth Allocation Model

2022-11-23 14:48:25
Rafael F. Reale, Joberto S. B. Martins

Abstract

Reinforcement learning (RL) is currently used in various real-life applications. RL-based solutions have the potential to generically address problems, including the ones that are difficult to solve with heuristics and meta-heuristics and, in addition, the set of problems and issues where some intelligent or cognitive approach is required. However, reinforcement learning agents require a not straightforward design and have important design issues. RL agent design issues include the target problem modeling, state-space explosion, the training process, and agent efficiency. Research currently addresses these issues aiming to foster RL dissemination. A BAM model, in summary, allocates and shares resources with users. There are three basic BAM models and several hybrids that differ in how they allocate and share resources among users. This paper addresses the issue of an RL agent design and efficiency. The RL agent's objective is to allocate and share resources among users. The paper investigates how a BAM model can contribute to the RL agent design and efficiency. The AllocTC-Sharing (ATCS) model is analytically described and simulated to evaluate how it mimics the RL agent operation and how the ATCS can offload computational tasks from the RL agent. The essential argument researched is whether algorithms integrated with the RL agent design and operation have the potential to facilitate agent design and optimize its execution. The ATCS analytical model and simulation presented demonstrate that a BAM model offloads agent tasks and assists the agent's design and optimization.

Abstract (translated)

URL

https://arxiv.org/abs/2211.12987

PDF

https://arxiv.org/pdf/2211.12987.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot