Paper Reading AI Learner

Less Data, More Knowledge: Building Next Generation Semantic Communication Networks

2022-11-25 19:03:25
Christina Chaccour, Walid Saad, Merouane Debbah, Zhu Han, H. Vincent Poor

Abstract

Semantic communication is viewed as a revolutionary paradigm that can potentially transform how we design and operate wireless communication systems. However, despite a recent surge of research activities in this area, the research landscape remains limited. In this tutorial, we present the first rigorous vision of a scalable end-to-end semantic communication network that is founded on novel concepts from artificial intelligence (AI), causal reasoning, and communication theory. We first discuss how the design of semantic communication networks requires a move from data-driven networks towards knowledge-driven ones. Subsequently, we highlight the necessity of creating semantic representations of data that satisfy the key properties of minimalism, generalizability, and efficiency so as to do more with less. We then explain how those representations can form the basis a so-called semantic language. By using semantic representation and languages, we show that the traditional transmitter and receiver now become a teacher and apprentice. Then, we define the concept of reasoning by investigating the fundamentals of causal representation learning and their role in designing semantic communication networks. We demonstrate that reasoning faculties are majorly characterized by the ability to capture causal and associational relationships in datastreams. For such reasoning-driven networks, we propose novel and essential semantic communication metrics that include new "reasoning capacity" measures that could go beyond Shannon's bound to capture the convergence of computing and communication. Finally, we explain how semantic communications can be scaled to large-scale networks (6G and beyond). In a nutshell, we expect this tutorial to provide a comprehensive reference on how to properly build, analyze, and deploy future semantic communication networks.

Abstract (translated)

URL

https://arxiv.org/abs/2211.14343

PDF

https://arxiv.org/pdf/2211.14343.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot