Paper Reading AI Learner

Transfer RL via the Undo Maps Formalism

2022-11-26 03:44:28
Abhi Gupta, Ted Moskovitz, David Alvarez-Melis, Aldo Pacchiano

Abstract

Transferring knowledge across domains is one of the most fundamental problems in machine learning, but doing so effectively in the context of reinforcement learning remains largely an open problem. Current methods make strong assumptions on the specifics of the task, often lack principled objectives, and -- crucially -- modify individual policies, which might be sub-optimal when the domains differ due to a drift in the state space, i.e., it is intrinsic to the environment and therefore affects every agent interacting with it. To address these drawbacks, we propose TvD: transfer via distribution matching, a framework to transfer knowledge across interactive domains. We approach the problem from a data-centric perspective, characterizing the discrepancy in environments by means of (potentially complex) transformation between their state spaces, and thus posing the problem of transfer as learning to undo this transformation. To accomplish this, we introduce a novel optimization objective based on an optimal transport distance between two distributions over trajectories -- those generated by an already-learned policy in the source domain and a learnable pushforward policy in the target domain. We show this objective leads to a policy update scheme reminiscent of imitation learning, and derive an efficient algorithm to implement it. Our experiments in simple gridworlds show that this method yields successful transfer learning across a wide range of environment transformations.

Abstract (translated)

URL

https://arxiv.org/abs/2211.14469

PDF

https://arxiv.org/pdf/2211.14469.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot