Paper Reading AI Learner

Equity Promotion in Public Transportation

2022-11-26 10:06:00
Anik Pramanik, Pan Xu, Yifan Xu

Abstract

There are many news articles reporting the obstacles confronting poverty-stricken households in access to public transits. These barriers create a great deal of inconveniences for these impoverished families and more importantly, they contribute a lot of social inequalities. A typical approach addressing the issue is to build more transport infrastructure to offer more opportunities to access the public transits especially for those deprived communities. Examples include adding more bus lines connecting needy residents to railways systems and extending existing bus lines to areas with low socioeconomic status. Recently, a new strategy is proposed, which is to harness the ubiquitous ride-hailing services to connect disadvantaged households with the nearest public transportations. Compared with the former infrastructure-based solution, the ride-hailing-based strategy enjoys a few exclusive benefits such as higher effectiveness and more flexibility. In this paper, we propose an optimization model to study how to integrate the two approaches together for equity-promotion purposes. Specifically, we aim to design a strategy of allocating a given limited budget to different candidate programs such that the overall social equity is maximized, which is defined as the minimum covering ratio among all pre-specified protected groups of households (based on race, income, etc.). We have designed a linear-programming (LP) based rounding algorithm, which proves to achieve an optimal approximation ratio of 1-1/e. Additionally, we test our algorithm against a few baselines on real data assembled by outsourcing multiple public datasets collected in the city of Chicago. Experimental results confirm our theoretical predictions and demonstrate the effectiveness of our LP-based strategy in promoting social equity, especially when the budget is insufficient.

Abstract (translated)

URL

https://arxiv.org/abs/2211.14531

PDF

https://arxiv.org/pdf/2211.14531.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot