Paper Reading AI Learner

Dynamic Feature Pruning and Consolidation for Occluded Person Re-Identification

2022-11-27 06:18:40
Yuteng Ye, Hang Zhou, Junqing Yu, Qiang Hu, Wei Yang

Abstract

Occluded person re-identification (ReID) is a challenging problem due to contamination from occluders, and existing approaches address the issue with prior knowledge cues, eg human body key points, semantic segmentations and etc, which easily fails in the presents of heavy occlusion and other humans as occluders. In this paper, we propose a feature pruning and consolidation (FPC) framework to circumvent explicit human structure parse, which mainly consists of a sparse encoder, a global and local feature ranking module, and a feature consolidation decoder. Specifically, the sparse encoder drops less important image tokens (mostly related to background noise and occluders) solely according to correlation within the class token attention instead of relying on prior human shape information. Subsequently, the ranking stage relies on the preserved tokens produced by the sparse encoder to identify k-nearest neighbors from a pre-trained gallery memory by measuring the image and patch-level combined similarity. Finally, we use the feature consolidation module to compensate pruned features using identified neighbors for recovering essential information while disregarding disturbance from noise and occlusion. Experimental results demonstrate the effectiveness of our proposed framework on occluded, partial and holistic Re-ID datasets. In particular, our method outperforms state-of-the-art results by at least 8.6% mAP and 6.0% Rank-1 accuracy on the challenging Occluded-Duke dataset.

Abstract (translated)

URL

https://arxiv.org/abs/2211.14742

PDF

https://arxiv.org/pdf/2211.14742.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot