Paper Reading AI Learner

Hide and Seek: Scaling Machine Learning for Combinatorial Optimization via the Probabilistic Method

2022-11-21 17:52:13
Dimitris Achlioptas, Amrit Daswaney, Periklis A. Papakonstantinou

Abstract

Applying deep learning to solve real-life instances of hard combinatorial problems has tremendous potential. Research in this direction has focused on the Boolean satisfiability (SAT) problem, both because of its theoretical centrality and practical importance. A major roadblock faced, though, is that training sets are restricted to random formulas of size several orders of magnitude smaller than formulas of practical interest, raising serious concerns about generalization. This is because labeling random formulas of increasing size rapidly becomes intractable. By exploiting the probabilistic method in a fundamental way, we remove this roadblock entirely: we show how to generate correctly labeled random formulas of any desired size, without having to solve the underlying decision problem. Moreover, the difficulty of the classification task for the formulas produced by our generator is tunable by varying a simple scalar parameter. This opens up an entirely new level of sophistication for the machine learning methods that can be brought to bear on Satisfiability. Using our generator, we train existing state-of-the-art models for the task of predicting satisfiability on formulas with 10,000 variables. We find that they do no better than random guessing. As a first indication of what can be achieved with the new generator, we present a novel classifier that performs significantly better than random guessing 99% on the same datasets, for most difficulty levels. Crucially, unlike past approaches that learn based on syntactic features of a formula, our classifier performs its learning on a short prefix of a solver's computation, an approach that we expect to be of independent interest.

Abstract (translated)

URL

https://arxiv.org/abs/2211.15368

PDF

https://arxiv.org/pdf/2211.15368.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot