Paper Reading AI Learner

Shortcut Removal for Improved OOD-Generalization

2022-11-24 13:05:33
Nicolas M. Müller, Jochen Jacobs, Jennifer Williams, Konstantin Böttinger

Abstract

Machine learning is a data-driven discipline, and learning success is largely dependent on the quality of the underlying data sets. However, it is becoming increasingly clear that even high performance on held-out test data does not necessarily mean that a model generalizes or learns anything meaningful at all. One reason for this is the presence of machine learning shortcuts, i.e., hints in the data that are predictive but accidental and semantically unconnected to the problem. We present a new approach to detect such shortcuts and a technique to automatically remove them from datasets. Using an adversarially trained lens, any small and highly predictive clues in images can be detected and removed. We show that this approach 1) does not cause degradation of model performance in the absence of these shortcuts, and 2) reliably identifies and neutralizes shortcuts from different image datasets. In our experiments, we are able to recover up to 93,8% of model performance in the presence of different shortcuts. Finally, we apply our model to a real-world dataset from the medical domain consisting of chest x-rays and identify and remove several types of shortcuts that are known to hinder real-world applicability. Thus, we hope that our proposed approach fosters real-world applicability of machine learning.

Abstract (translated)

URL

https://arxiv.org/abs/2211.15510

PDF

https://arxiv.org/pdf/2211.15510.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot